Quest 10: Feast on the Board
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
Link to participate: https://everybody.codes/
You must log in or # to comment.
Rust
use std::collections::{BTreeSet, HashMap, HashSet}; use itertools::Itertools; pub fn solve_part_1(input: &str) -> String { let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect(); let mut front: HashSet<_> = (0usize..board.len()) .cartesian_product(0usize..board[0].len()) .filter(|&(i, j)| board[i][j] == 'D') .collect(); let mut visited = HashSet::new(); let knight_moves: [(isize, isize); 8] = [ (2, 1), (2, -1), (-2, -1), (-2, 1), (1, 2), (1, -2), (-1, -2), (-1, 2), ]; for _ in 0..=4 { let mut next_front = HashSet::new(); for (i, j) in front.drain() { for (di, dj) in knight_moves { let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj)); if ni >= board.len() || nj >= board[0].len() { continue; } if visited.contains(&(ni, nj)) { continue; } next_front.insert((ni, nj)); } visited.insert((i, j)); } front = next_front; } visited .drain() .filter(|&(i, j)| board[i][j] == 'S') .count() .to_string() } fn solve_part_2_with_turns(input: &str, turns: usize) -> String { let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect(); let mut front: HashSet<_> = (0usize..board.len()) .cartesian_product(0usize..board[0].len()) .filter(|&(i, j)| board[i][j] == 'D') .collect(); let knight_moves: [(isize, isize); 8] = [ (2, 1), (2, -1), (-2, -1), (-2, 1), (1, 2), (1, -2), (-1, -2), (-1, 2), ]; let mut eaten_sheep = HashSet::new(); for turn in 0..=turns { let mut next_front = HashSet::new(); for (i, j) in front.drain() { for (di, dj) in knight_moves { let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj)); if ni >= board.len() || nj >= board[0].len() { continue; } next_front.insert((ni, nj)); } if board[i][j] != '#' { if let Some(sheep_i) = (i + 1).checked_sub(turn) && board[sheep_i][j] == 'S' { eaten_sheep.insert((sheep_i, j)); } if let Some(sheep_i) = i.checked_sub(turn) && turn != 0 && board[sheep_i][j] == 'S' { eaten_sheep.insert((sheep_i, j)); } } } front = next_front; } eaten_sheep.len().to_string() } pub fn solve_part_2(input: &str) -> String { solve_part_2_with_turns(input, 20) } type VeryComplexType = HashMap<(usize, usize, usize, Vec<(usize, usize)>), usize>; fn count_winning_sequences( turn: usize, dragon: (usize, usize), hiding_places: &HashSet<(usize, usize)>, sheep: BTreeSet<(usize, usize)>, height: usize, width: usize, cache: &mut VeryComplexType, ) -> usize { if sheep.is_empty() { return 1; } let cache_key = ( turn % 2, dragon.0, dragon.1, sheep.iter().cloned().collect(), ); if let Some(result) = cache.get(&cache_key) { return *result; } if turn % 2 == 1 { let knight_moves: [(isize, isize); 8] = [ (2, 1), (2, -1), (-2, -1), (-2, 1), (1, 2), (1, -2), (-1, -2), (-1, 2), ]; let (i, j) = dragon; let mut total = 0; for (di, dj) in knight_moves { let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj)); if ni >= height || nj >= width { continue; } if !hiding_places.contains(&(ni, nj)) && sheep.contains(&(ni, nj)) { let mut new_sheep = sheep.clone(); new_sheep.remove(&(ni, nj)); total += count_winning_sequences( turn + 1, (ni, nj), hiding_places, new_sheep, height, width, cache, ); } else { total += count_winning_sequences( turn + 1, (ni, nj), hiding_places, sheep.clone(), height, width, cache, ); } } cache.insert(cache_key, total); total } else { let mut sheep_moves_available = false; let mut total = 0; for &(i, j) in sheep.iter() { if dragon == (i + 1, j) && !hiding_places.contains(&(i + 1, j)) { continue; } sheep_moves_available = true; if i == (height - 1) { continue; } let mut new_sheep = sheep.clone(); new_sheep.remove(&(i, j)); new_sheep.insert((i + 1, j)); total += count_winning_sequences( turn + 1, dragon, hiding_places, new_sheep, height, width, cache, ); } if !sheep_moves_available { return count_winning_sequences( turn + 1, dragon, hiding_places, sheep, height, width, cache, ); } cache.insert(cache_key, total); total } } pub fn solve_part_3(input: &str) -> String { let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect(); let dragon = (0usize..board.len()) .cartesian_product(0usize..board[0].len()) .filter(|&(i, j)| board[i][j] == 'D') .exactly_one() .unwrap(); let sheep = (0usize..board.len()) .cartesian_product(0usize..board[0].len()) .filter(|&(i, j)| board[i][j] == 'S') .collect::<BTreeSet<_>>(); let hiding_places = (0usize..board.len()) .cartesian_product(0usize..board[0].len()) .filter(|&(i, j)| board[i][j] == '#') .collect::<HashSet<_>>(); let mut cache = HashMap::new(); count_winning_sequences( 0, dragon, &hiding_places, sheep, board.len(), board[0].len(), &mut cache, ) .to_string() }Haskell
Hmm. I’m still not very happy with part 3: it’s a bit slow and messy. Doing state over the list monad for memoization doesn’t work well, so I’m enumerating all possible configurations first and taking advantage of laziness.
import Control.Monad import Data.Bifunctor import Data.Ix import Data.List import Data.Map (Map) import Data.Map qualified as Map import Data.Maybe import Data.Set.Monad (Set) import Data.Set.Monad qualified as Set import Data.Tuple type Pos = (Int, Int) readInput :: String -> ((Pos, Pos), Pos, Set Pos, Set Pos) readInput s = let grid = Map.fromList [ ((i, j), c) | (i, cs) <- zip [0 ..] $ lines s, (j, c) <- zip [0 ..] cs ] in ( ((0, 0), fst $ Map.findMax grid), fst $ fromJust $ find ((== 'D') . snd) $ Map.assocs grid, Set.fromList $ Map.keys (Map.filter (== 'S') grid), Set.fromList $ Map.keys (Map.filter (== '#') grid) ) moveDragon (i, j) = Set.mapMonotonic (bimap (+ i) (+ j)) offsets where offsets = Set.fromList ([id, swap] <*> ((,) <$> [-1, 1] <*> [-2, 2])) dragonMoves bounds = iterate (Set.filter (inRange bounds) . (>>= moveDragon)) . Set.singleton part1 n (bounds, start, sheep, _) = (!! n) . map (Set.size . Set.intersection sheep) . scanl1 Set.union $ dragonMoves bounds start part2 n (bounds, dragonStart, sheepStart, hideouts) = (!! n) . map ((Set.size sheepStart -) . Set.size) . scanl' ( \sheep eaten -> (Set.\\ eaten) . Set.mapMonotonic (first (+ 1)) . (Set.\\ eaten) $ sheep ) sheepStart . map (Set.\\ hideouts) $ (tail $ dragonMoves bounds dragonStart) part3 (bounds, dragonStart, sheepStart, hideouts) = count (dragonStart, sheepStart) where sheepStartByColumn = Map.fromList $ map swap $ Set.elems sheepStart sheepConfigs = map ( (Set.fromList . catMaybes) . zipWith (\j -> fmap (,j)) (Map.keys sheepStartByColumn) ) . mapM ( ((Nothing :) . map Just) . (`enumFromTo` (fst $ snd bounds)) ) $ Map.elems sheepStartByColumn count = ((Map.!) . Map.fromList . map ((,) <*> go)) ((,) <$> range bounds <*> sheepConfigs) go (dragon, sheep) | null sheep = 1 | otherwise = (sum . map count) $ do let movableSheep = filter (\(_, p) -> p /= dragon || Set.member p hideouts) $ map (\(i, j) -> ((i, j), (i + 1, j))) $ Set.elems sheep sheepMoves = if null movableSheep then [sheep] else do (p1, p2) <- movableSheep return $ Set.insert p2 $ Set.delete p1 sheep sheep' <- sheepMoves guard $ all (inRange bounds) sheep' dragon' <- Set.elems $ moveDragon dragon guard $ inRange bounds dragon' let eaten = Set.singleton dragon' Set.\\ hideouts return (dragon', sheep' Set.\\ eaten) main = do readFile "everybody_codes_e2025_q10_p1.txt" >>= print . part1 4 . readInput readFile "everybody_codes_e2025_q10_p2.txt" >>= print . part2 20 . readInput readFile "everybody_codes_e2025_q10_p3.txt" >>= print . part3 . readInput


