Quest 10: Feast on the Board

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

Link to participate: https://everybody.codes/

  • hades@programming.devOPM
    link
    fedilink
    arrow-up
    1
    ·
    2 days ago

    Rust

    use std::collections::{BTreeSet, HashMap, HashSet};
    
    use itertools::Itertools;
    
    pub fn solve_part_1(input: &str) -> String {
        let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect();
        let mut front: HashSet<_> = (0usize..board.len())
            .cartesian_product(0usize..board[0].len())
            .filter(|&(i, j)| board[i][j] == 'D')
            .collect();
        let mut visited = HashSet::new();
        let knight_moves: [(isize, isize); 8] = [
            (2, 1),
            (2, -1),
            (-2, -1),
            (-2, 1),
            (1, 2),
            (1, -2),
            (-1, -2),
            (-1, 2),
        ];
        for _ in 0..=4 {
            let mut next_front = HashSet::new();
            for (i, j) in front.drain() {
                for (di, dj) in knight_moves {
                    let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj));
                    if ni >= board.len() || nj >= board[0].len() {
                        continue;
                    }
                    if visited.contains(&(ni, nj)) {
                        continue;
                    }
                    next_front.insert((ni, nj));
                }
                visited.insert((i, j));
            }
            front = next_front;
        }
        visited
            .drain()
            .filter(|&(i, j)| board[i][j] == 'S')
            .count()
            .to_string()
    }
    
    fn solve_part_2_with_turns(input: &str, turns: usize) -> String {
        let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect();
        let mut front: HashSet<_> = (0usize..board.len())
            .cartesian_product(0usize..board[0].len())
            .filter(|&(i, j)| board[i][j] == 'D')
            .collect();
        let knight_moves: [(isize, isize); 8] = [
            (2, 1),
            (2, -1),
            (-2, -1),
            (-2, 1),
            (1, 2),
            (1, -2),
            (-1, -2),
            (-1, 2),
        ];
        let mut eaten_sheep = HashSet::new();
        for turn in 0..=turns {
            let mut next_front = HashSet::new();
            for (i, j) in front.drain() {
                for (di, dj) in knight_moves {
                    let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj));
                    if ni >= board.len() || nj >= board[0].len() {
                        continue;
                    }
                    next_front.insert((ni, nj));
                }
                if board[i][j] != '#' {
                    if let Some(sheep_i) = (i + 1).checked_sub(turn)
                        && board[sheep_i][j] == 'S'
                    {
                        eaten_sheep.insert((sheep_i, j));
                    }
                    if let Some(sheep_i) = i.checked_sub(turn)
                        && turn != 0
                        && board[sheep_i][j] == 'S'
                    {
                        eaten_sheep.insert((sheep_i, j));
                    }
                }
            }
            front = next_front;
        }
        eaten_sheep.len().to_string()
    }
    
    pub fn solve_part_2(input: &str) -> String {
        solve_part_2_with_turns(input, 20)
    }
    type VeryComplexType = HashMap<(usize, usize, usize, Vec<(usize, usize)>), usize>;
    fn count_winning_sequences(
        turn: usize,
        dragon: (usize, usize),
        hiding_places: &HashSet<(usize, usize)>,
        sheep: BTreeSet<(usize, usize)>,
        height: usize,
        width: usize,
        cache: &mut VeryComplexType,
    ) -> usize {
        if sheep.is_empty() {
            return 1;
        }
        let cache_key = (
            turn % 2,
            dragon.0,
            dragon.1,
            sheep.iter().cloned().collect(),
        );
        if let Some(result) = cache.get(&cache_key) {
            return *result;
        }
        if turn % 2 == 1 {
            let knight_moves: [(isize, isize); 8] = [
                (2, 1),
                (2, -1),
                (-2, -1),
                (-2, 1),
                (1, 2),
                (1, -2),
                (-1, -2),
                (-1, 2),
            ];
            let (i, j) = dragon;
            let mut total = 0;
            for (di, dj) in knight_moves {
                let (ni, nj) = (i.wrapping_add_signed(di), j.wrapping_add_signed(dj));
                if ni >= height || nj >= width {
                    continue;
                }
                if !hiding_places.contains(&(ni, nj)) && sheep.contains(&(ni, nj)) {
                    let mut new_sheep = sheep.clone();
                    new_sheep.remove(&(ni, nj));
                    total += count_winning_sequences(
                        turn + 1,
                        (ni, nj),
                        hiding_places,
                        new_sheep,
                        height,
                        width,
                        cache,
                    );
                } else {
                    total += count_winning_sequences(
                        turn + 1,
                        (ni, nj),
                        hiding_places,
                        sheep.clone(),
                        height,
                        width,
                        cache,
                    );
                }
            }
            cache.insert(cache_key, total);
            total
        } else {
            let mut sheep_moves_available = false;
            let mut total = 0;
            for &(i, j) in sheep.iter() {
                if dragon == (i + 1, j) && !hiding_places.contains(&(i + 1, j)) {
                    continue;
                }
                sheep_moves_available = true;
                if i == (height - 1) {
                    continue;
                }
                let mut new_sheep = sheep.clone();
                new_sheep.remove(&(i, j));
                new_sheep.insert((i + 1, j));
                total += count_winning_sequences(
                    turn + 1,
                    dragon,
                    hiding_places,
                    new_sheep,
                    height,
                    width,
                    cache,
                );
            }
            if !sheep_moves_available {
                return count_winning_sequences(
                    turn + 1,
                    dragon,
                    hiding_places,
                    sheep,
                    height,
                    width,
                    cache,
                );
            }
            cache.insert(cache_key, total);
            total
        }
    }
    
    pub fn solve_part_3(input: &str) -> String {
        let board: Vec<Vec<_>> = input.lines().map(|l| l.chars().collect()).collect();
        let dragon = (0usize..board.len())
            .cartesian_product(0usize..board[0].len())
            .filter(|&(i, j)| board[i][j] == 'D')
            .exactly_one()
            .unwrap();
        let sheep = (0usize..board.len())
            .cartesian_product(0usize..board[0].len())
            .filter(|&(i, j)| board[i][j] == 'S')
            .collect::<BTreeSet<_>>();
        let hiding_places = (0usize..board.len())
            .cartesian_product(0usize..board[0].len())
            .filter(|&(i, j)| board[i][j] == '#')
            .collect::<HashSet<_>>();
        let mut cache = HashMap::new();
        count_winning_sequences(
            0,
            dragon,
            &hiding_places,
            sheep,
            board.len(),
            board[0].len(),
            &mut cache,
        )
        .to_string()
    }
    
  • Amy@piefed.blahaj.zone
    link
    fedilink
    English
    arrow-up
    2
    ·
    edit-2
    3 days ago

    Haskell

    Hmm. I’m still not very happy with part 3: it’s a bit slow and messy. Doing state over the list monad for memoization doesn’t work well, so I’m enumerating all possible configurations first and taking advantage of laziness.

    import Control.Monad  
    import Data.Bifunctor  
    import Data.Ix  
    import Data.List  
    import Data.Map (Map)  
    import Data.Map qualified as Map  
    import Data.Maybe  
    import Data.Set.Monad (Set)  
    import Data.Set.Monad qualified as Set  
    import Data.Tuple  
    
    type Pos = (Int, Int)  
    
    readInput :: String -> ((Pos, Pos), Pos, Set Pos, Set Pos)  
    readInput s =  
      let grid =  
            Map.fromList  
              [ ((i, j), c)  
                | (i, cs) <- zip [0 ..] $ lines s,  
                  (j, c) <- zip [0 ..] cs  
              ]  
       in ( ((0, 0), fst $ Map.findMax grid),  
            fst $ fromJust $ find ((== 'D') . snd) $ Map.assocs grid,  
            Set.fromList $ Map.keys (Map.filter (== 'S') grid),  
            Set.fromList $ Map.keys (Map.filter (== '#') grid)  
          )  
    
    moveDragon (i, j) = Set.mapMonotonic (bimap (+ i) (+ j)) offsets  
      where  
        offsets = Set.fromList ([id, swap] <*> ((,) <$> [-1, 1] <*> [-2, 2]))  
    
    dragonMoves bounds =  
      iterate (Set.filter (inRange bounds) . (>>= moveDragon)) . Set.singleton  
    
    part1 n (bounds, start, sheep, _) =  
      (!! n)  
        . map (Set.size . Set.intersection sheep)  
        . scanl1 Set.union  
        $ dragonMoves bounds start  
    
    part2 n (bounds, dragonStart, sheepStart, hideouts) =  
      (!! n)  
        . map ((Set.size sheepStart -) . Set.size)  
        . scanl'  
          ( \sheep eaten ->  
              (Set.\\ eaten)  
                . Set.mapMonotonic (first (+ 1))  
                . (Set.\\ eaten)  
                $ sheep  
          )  
          sheepStart  
        . map (Set.\\ hideouts)  
        $ (tail $ dragonMoves bounds dragonStart)  
    
    part3 (bounds, dragonStart, sheepStart, hideouts) =  
      count (dragonStart, sheepStart)  
      where  
        sheepStartByColumn = Map.fromList $ map swap $ Set.elems sheepStart  
        sheepConfigs =  
          map  
            ( (Set.fromList . catMaybes)  
                . zipWith (\j -> fmap (,j)) (Map.keys sheepStartByColumn)  
            )  
            . mapM  
              ( ((Nothing :) . map Just)  
                  . (`enumFromTo` (fst $ snd bounds))  
              )  
            $ Map.elems sheepStartByColumn  
        count =  
          ((Map.!) . Map.fromList . map ((,) <*> go))  
            ((,) <$> range bounds <*> sheepConfigs)  
        go (dragon, sheep)  
          | null sheep = 1  
          | otherwise =  
              (sum . map count) $ do  
                let movableSheep =  
                      filter (\(_, p) -> p /= dragon || Set.member p hideouts) $  
                        map (\(i, j) -> ((i, j), (i + 1, j))) $  
                          Set.elems sheep  
                    sheepMoves =  
                      if null movableSheep  
                        then [sheep]  
                        else do  
                          (p1, p2) <- movableSheep  
                          return $ Set.insert p2 $ Set.delete p1 sheep  
                sheep' <- sheepMoves  
                guard $ all (inRange bounds) sheep'  
                dragon' <- Set.elems $ moveDragon dragon  
                guard $ inRange bounds dragon'  
                let eaten = Set.singleton dragon' Set.\\ hideouts  
                return (dragon', sheep' Set.\\ eaten)  
    
    main = do  
      readFile "everybody_codes_e2025_q10_p1.txt" >>= print . part1 4 . readInput  
      readFile "everybody_codes_e2025_q10_p2.txt" >>= print . part2 20 . readInput  
      readFile "everybody_codes_e2025_q10_p3.txt" >>= print . part3 . readInput