Good thing there’s no oxygen around then. Petrol doesn’t burn without oxygen either, but it’s still dangerous. Additionally typical fuel cell hydrogen cars, store the hydrogen in tanks up to 10,000 psi, which is where the explosion part happens.
Another huge expensive problem is transporting it is not easy. At room at atmospheric pressure and temperature, it takes up like 2-3 grams per gallon of space, making it super inefficient to transport.
You could pressurize it, but that makes it insanely flammable and a risk of it leaks. You could also cryo-freeze it, but that is also very expensive to transport, it require a lot of energy to freeze it, maintain it during long transports, and to unfreeze it at it’s destination.
Building a hydrogen delivery infrastructure is probably the best way to overcome this, but that would also take years and billions.
I’m no expert on the field, but I’d imagine a lot of energy departments would rather do that cost and effort towards building new green energy plants that can deliver power to grids rather than only help cars. Car-wise, most things are transitioning to hybrid or electric anyways, so they also benefit from a green power plant.
Isn’t one the issues with hydrogen motors that they are a bit explodey? Genuine question, haven’t looked into it in a long time.
Pure hydrogen doesn’t explode. It’s only if you mix it with oxygen. The Hindenberg glowed red not blue
Good thing there’s no oxygen around then. Petrol doesn’t burn without oxygen either, but it’s still dangerous. Additionally typical fuel cell hydrogen cars, store the hydrogen in tanks up to 10,000 psi, which is where the explosion part happens.
Agreed. Petrol cars are also explodey. As are EVs. In fact most energy dense objects are explodey.
The issue with the 10000 psi tanks are the size and weight. Not the explodeyness.
Another huge expensive problem is transporting it is not easy. At room at atmospheric pressure and temperature, it takes up like 2-3 grams per gallon of space, making it super inefficient to transport.
You could pressurize it, but that makes it insanely flammable and a risk of it leaks. You could also cryo-freeze it, but that is also very expensive to transport, it require a lot of energy to freeze it, maintain it during long transports, and to unfreeze it at it’s destination.
Building a hydrogen delivery infrastructure is probably the best way to overcome this, but that would also take years and billions.
I’m no expert on the field, but I’d imagine a lot of energy departments would rather do that cost and effort towards building new green energy plants that can deliver power to grids rather than only help cars. Car-wise, most things are transitioning to hybrid or electric anyways, so they also benefit from a green power plant.